
FX Series Programmable Controllers STL Programming 3

Chapter Contents

3. STL Programming ...3-1
3.1 What is STL, SFC And IEC1131 Part 3?... 3-1
3.2 How STL Operates .. 3-2

3.2.1 Each step is a program ... 3-2
3.3 How To Start And End An STL Program ... 3-3

3.3.1 Embedded STL programs ... 3-3
3.3.2 Activating new states... 3-3
3.3.3 Terminating an STL Program .. 3-4

3.4 Moving Between STL Steps .. 3-5
3.4.1 Using SET to drive an STL coil ... 3-5
3.4.2 Using OUT to drive an STL coil ... 3-6

3.5 Rules and Techniques For STL programs... 3-7
3.5.1 Basic Notes On The Behavior Of STL programs... 3-7
3.5.2 Single Signal Step Control .. 3-9

3.6 Restrictions Of Some Instructions When Used With STL.................................. 3-10
3.7 Using STL To Select The Most Appropriate Program 3-11
3.8 Using STL To Activate Multiple Flows Simultaneously...................................... 3-12
3.9 General Rules For Successful STL Branching .. 3-14
3.10 General Precautions When Using The FX-PCS/AT-EE Software 3-15
3.11 Programming Examples .. 3-16

3.11.1 A Simple STL Flow.. 3-16
3.11.2 A Selective Branch/ First State Merge Example Program....................................... 3-18

3.12 Advanced STL Use.. 3-20

STL Programming 3

3-1

3. STL Programming

This chapter differs from the rest of the contents in this manual as it has been written with a
training aspect in mind. STL/SFC programming, although having been available for many
years, is still misunderstood and misrepresented. We at Mitsubishi would like to take this
opportunity to try to correct this oversight as we see STL/SFC programming becoming as
important as ladder style programming.

3.1 What is STL, SFC And IEC1131 Part 3?

The following explanation is very brief but is designed to quickly outline the differences and
similarities between STL, SFC and IEC1131 part 3.
In recent years Sequential Function Chart (or SFC) style programming (including other similar
styles such as Grafcet and Funktionplan) have become very popular through out Europe and
have prompted the creation of IEC1131 part 3.
The IEC1131 SFC standard has been designed to become an interchangeable programming
language. The idea being that a program written to IEC1131 SFC standards on one
manufacturers PLC can be easily transferred (converted) for use on a second manufacturers
PLC.
STL programming is one of the basic programming instructions included in all FX PLC family
members. The abbreviation STL actually means STep Ladder programming.
STL programming is a very simple concept to understand yet can provide the user with one of
the most powerful programming techniques possible. The key to STL lies in its ability to allow
the programmer to create an operational program which ‘flows’ and works in almost exactly the
same manner as SFC. This is not a coincidence as this programming technique has been
developed deliberately to achieve an easy to program and monitor system.
One of the key differences to Mitsubishi’s STL programming system is that it can be entered
into a PLC in 3 formats. These are:

Ι) Instruction - a word/mnemonic entry system

ΙΙ) Ladder - a graphical program construction method using a relay logic symbols

ΙΙΙ) SFC - a flow chart style of STL program entry (similar to SFC)

Examples of these programming methods can be seen on page 2-1.

FX1S FX1N FX2N FX2NC

General note:

• IEC1131-3: 03.1993 Programmable controllers; part 3: programming languages.
The above standard is technically identical to the ‘Euro-Norm’
EN61131-3: 07.1993

FX Series Programmable Controllers

FX Series Programmable Controllers STL Programming 3

3-2

3.2 How STL Operates

As previously mentioned, STL is a system which
allows the user to write a program which functions
in much the same way as a flow chart, this can be
seen in the diagram opposite.
STL derives its strength by organizing a larger
program into smaller more manageable parts.
Each of these parts can be referred to as either a
state or a step. To help identify the states, each is
given a unique identification number. These
numbers are taken from the state relay devices
(see page 4-6 for more details).

3.2.1 Each step is a program

Each state is completely isolated from all other states within the whole program. A good way to
envisage this, is that each state is a separate program and the user puts each of those
programs together in the order that they require to perform their task. Immediately this means
that states can be reused many times and in different orders. This saves on programming time
AND cuts down on the number of programming errors encountered.

A Look Inside an STL

On initial inspection the STL program looks as if it is a rather basic flow diagram. But to find out
what is really happening the STL state needs to be put ‘under a microscope’ so to speak.
When a single state is examined in more detail, the sub-program can be viewed.

With the exception of the STL instruction, it will be
immediately seen that the STL sub-program looks
just like ordinary programming.

�The STL instruction is shown as a ‘fat’ normally
open contact.
All programming after an STL instruction is only
active when the associated state coil is active.

�The transition condition is also written using
standard programming.

This idea re-enforces the concept that STL is really
a method of sequencing a series of events or as
mentioned earl ier ‘of joining lots of smaller
programs together’.

M8002

X0
X1

S 0

S 26

X0
X1

X15

S 22

S 27

T0

T7

S 22

T0

1

2

STL

S 22

SET S 27
T0

Y22
K20

2

1

T0

FX Series Programmable Controllers STL Programming 3

3-3

Combined SFC Ladder representation

Sometimes STL programs will be written in hard copy as a combination of both flow diagram
and internal sub-program. (example shown below).
Identification of contact states

3.3 How To Start And End An STL Program

Before any complex programming can be undertaken the basics of how to start and more
importantly how to finish an STL program need to be examined.

3.3.1 Embedded STL programs

An STL style program does not have to
entirely replace a standard ladder logic
program. In fact it might be very difficult to do
so. Instead small or even large section of STL
program can be entered at any point in a
program. Once the STL task has been
completed the program must go back to
processing standard program instructions until
the next STL program block. Therefore,
ident i fy ing the start and end of an STL
program is very important.

3.3.2 Activating new states

Once an STL step has been selected, how is it used and how is the program ‘driven’?
This is not so difficult, if it is considered that for an STL step to be active its associated state
coil must be ON. Hence, to start an STL sequence all that has to be done is to drive the
relevant state ON.

There are many different methods to drive a
state, for example the initial state coils could
be pulsed, SET or just included in an OUT
instruction. However, within Mitsubishi’s STL
programming language an STL coil which is
SET has a different meaning than one that is
included in an OUT instruction.

M8002

X0
X1

S 0

S 26

X0
X1

X15

S 22

S 27

K20

K20

T0

T7

Y22

T0

Y27

T7

Y20

Y26

• Please note the following convention
is used:

	 Normally Open contact

 Normally Closed contact

Common alternatives are ‘a’ and ‘b’
i den t i f i e rs fo r No rma l ly Open,
Normally Closed states or often a line
drawn over the top of the Normally
Closed contact name is used, e.g.
X000.

LD
OUT
LD
SET
STL
OUT
LDI
OUT
RET
LD
OUT
RST

X000
Y004
X002
S009
S009
Y010
X003
Y006

X005
Y007
M080

Normal Ladder Program

Embedded STL Program

STL

S 22

SET S 27
T0

Y22

T0
K20

STL

S 27

Note: For normal STL operation it is recommended that the states are selected using the
SET instruction. To activate an STL step its state coil is SET ON.

FX Series Programmable Controllers STL Programming 3

3-4

Initial Steps

For an STL program which is to be activated
on the initial power up of the PLC, a trigger
similar to that shown opposite could be used,
i.e. using M8002 to drive the setting of the
initial state.
The STL step started in this manner is often
referred to as the initial step. Similarly, the
step activated first for any STL sequence is
also called the initial step.

3.3.3 Terminating an STL Program

Once an STL program has been started the programmable controllers CPU will process all fol-
lowing instructions as being part of that STL program. This means that when a second pro-
gram scan is started the normal instructions at the beginning of the program are considered to
be within the STL program. This is obviously incorrect and the CPU will proceed to identify a
programming error and disable the programmable controllers operation.
This scenario may seem a little strange but it does make sense when it is considered that the
STL program must return control to the ladder program after STL operation is complete. This
means the last step in an STL program needs to be identified in some way.

Returning to Standard Ladder

This is achieved by placing a RET or RETurn
instruction as the last instruction in the last
STL step of an STL program block.
This instruction then returns programming con-
trol to the ladder sequence.

STL

S005

M8002
SET S005

X001

X000

X012

X013

Y000

Y011

Y014

STL

S005

M8002
SET S005

X001

X000

X012

X013

Y000

Y011

Y014

RET

Note: The RET instruction can be used to separate STL programs into sections, with stan-
dard ladder between each STL program. For display of STL in SFC style format the RET
instruction is used to indicate the end of a complete STL program.

FX Series Programmable Controllers STL Programming 3

3-5

3.4 Moving Between STL Steps

To activate an STL step the user must first drive the state coil. Setting the coil has already
been identified as a way to start an STL program, i.e. drive an initial state. It was also noted
that using an OUT statement to driving a state coil has a different meaning to the SET
instruction. These difference will now be explained:

3.4.1 Using SET to drive an STL coil

• SET is used to drive an STL state coil to make the step active. Once the current STL step
activates a second following step, the source STL coil is reset. Hence, although SET is
used to activate a state the resetting is automatic.

However, if an STL state is driven by a
series of standard ladder logic instructions,
i .e . not a preceding STL sta te, then
standard programming rules apply.
In the example shown opposite S20 is not
reset even after S30 or S21 have been
driven. In addition, if S20 is turned OFF,
S30 wi l l a lso stop operat ing. This is
because S20 has not been used as an STL
state. The first instruction involving the
status of S20 is a standard LoaD instruction and NOT an STL instruction.

• SET is used to drive an immediately following STL step which typically will have a larger
STL state number than the current step.

• SET is used to drive STL states which occur within the enclosed STL program flow, i.e.
SET is not used to activate a state which appears in an unconnected, second STL flow
diagram.

X000

SET S021

S040
S020

RST S022

S020
S030

X000
ZRST S21 S28

Note: If a user wishes to forcibly reset an
STL step, using the RST or ZRST (FNC
40) instructions would perform this task.

FX Series Programmable Controllers STL Programming 3

3-6

3.4.2 Using OUT to drive an STL coil

This has the same operational features as using SET. However, there is one major function
which SET is not used. This is to make what is termed ‘distant jumps’.

OUT is used for loops and jumps

If a user wishes to ‘jump’ back up a program,
i.e. go back to a state which has already been
processed, the OUT instruction would be used
with the appropriate STL state number.
Alternatively the user may wish to make a
large ‘jump’ forwards skipping a whole section
of STL programmed states.

Out is used for distant jumps

If a step in one STL program flow was required
to trigger a step in a second, separate STL
program flow the OUT instruction would be
used.

S 0

S 22

S 20

S 21

OUT

S 23

S 0

S 20

S 21

S 23

S 22

OUT

Partial
repeat

Program
jump

S 0

S 20

S 21

S 23

S 22

OUT

S 1

S 40

S 41

S 44

S 43

S 42

STL
flow 1

STL
flow 2

Note: Although it is possible to use SET for jumps and loops use of OUT is needed for
display of STL in SFC like structured format.

FX Series Programmable Controllers STL Programming 3

3-7

3.5 Rules and Techniques For STL programs

It can be seen that there are a lot of advantages to using STL style programming but there are
a few points a user must be aware of when writing the STL sub-programs.
These are highlighted in this section.

3.5.1 Basic Notes On The Behavior Of STL programs

• When an STL state becomes active its program is processed until the next step is triggered.
The contents of the program can contain all of the programming items and features of a
standard ladder program, i.e. LoaD, AND OR, OUT, ReSeT etc., as well as applied
instructions.

• When writing the sub-program of an STL state, the first vertical ‘bus bar’ after the STL
instruction can be considered in a similar manner as the left hand bus bar of a standard
ladder program.

• In normal programming using dual coils is not an acceptable technique. However repetition
of a coil in separate STL program blocks is allowed.

STL

S005
Y000

Y011

Y014

RET

X001

X000

X012

X013

1
Each STL step makes its own bus bar. This
means that a user, cannot use an MPS
instruction directly after the STL instruction
(see �), i.e. There needs to be at least a
single contact before the MPS instruction.

Note: Using out coils and even applied
instructions immediately after an STL
instruction is permitted.

M111S 30

S 31

S 32 M111

M112

This is because the user can take advantage of the STL’s
unique feature of isolating all STL steps except the active
STL steps.
This means in practice that there will be no conflict between
dual coils. The example opposite shows M111 used twice in a
single STL flow.

Caution: The same coil should NOT be programmed in steps
that will be active at the same time as this will result in the
same problem as other dual coils.

FX Series Programmable Controllers STL Programming 3

3-8

T001S 30

S 31

T001

S 32

K20

T001
K50

T001

Y11S 30

S 31 Y10

Y10

Y11

• When an STL step transfers control to the next STL
step there is a period (one scan) while both steps
are active. This can cause problems with dual coils;
particularly timers.
If timers are dual coiled care must be taken to
ensure that the timer operation is completed during
the active STL step.
If the same timer is used in consecutive steps then it
is possible that the timer coil is never deactivated
and the contacts of the timer will not be reset
leading to incorrect timer operation.
The example opposite identifies an unacceptable
use of timer T001. When control passes from S30 to
S31 T001 is not reset because its coil is still ON in
the new step.

Note: As a step towards ensuring the correct operation of the dual timers they
should not be used in consecutive STL steps.
Following this simple rule will ensure each timer will be reset correctly before its next
operation.

• As already mentioned, during the transfer between
steps, the current and the selected steps will be
simultaneously active for one program scan. This
could be thought of as a hand over or handshaking
period.
This means that if a user has two outputs contained
in consecutive steps which must NOT be active
simultaneously they must be interlocked. A good
example of this would be the drive signals to select
a motors rotation direction. In the example Y11 and
Y10 are shown interlocked with each other.

FX Series Programmable Controllers STL Programming 3

3-9

3.5.2 Single Signal Step Control

Transferring between active STL steps can be controlled by a single signal. There are two
methods the user can program to achieve this result.

Method 1 - Using locking devices

In this example it is necessary to program separate locking devices, and the controlling signal
must only pulse ON. This is to prevent the STL programs from running through.
The example shown below identifies the general program required for this method.

- S30 is activated when M0 is first pulsed ON.

- The operation of M1 prevents the sequence
from continuing because although M0 is ON,
the transfer requirements, need M0 to be ON
and M1 to be OFF.

- After one scan the pulsed M0 and the ‘lock’
device M1 are reset.

- On the next pulse of M0 the STL step will
transfer program control from S31 to the next
step in a similar manner. This time using M2 as
the ‘ lock ’ device because dual coi ls in
successive steps is not allowed.

- The reason for the use of the ‘lock’ devices M1
and M2 is because of the handshaking period
when both states involved in the transfer of
program control are ON for 1 program scan. Without the ‘locks’ it would be possible to
immediately skip through all of the STL states in one go!

Method 2 - Special Single Pulse Flags

Using the pulse contacts (LDP, LDF, ANP, etc.) and a special range of M devices (M2800 to
M3071) the same result as method 1 can be achieved. The special feature of these devices
prevents run through of the states, as only the first occurrence of the LDP instruction will
activate.

The example program below shows the necessary instructions.

- Assume S50 is already active.

- When X01 activates M2800, this in turn
activates the LDP M2800 instruction in
S50 and the flow moves on to step
S51.

- The LDP M2800 instruction in the
transition part of S51 does not execute
because this is the second occurrence
of M2800 in a pulse contact.

- When X01 next activates M2800, the
LDP instruction in S51 is the first
occurrence because S50 is now
inactive. Thus, control passes to the
next step in the same manner.

FX1S FX1N FX2N FX2NC

M1PLS

M0

S 30

S 31 M2PLS

M1

M2
M0

M0

FX1S FX1N FX2N FX2NC

S 50

S 51
M2800

M2800

LAD0

M2800

M2800
M2800

X001

SET S51
M2800

SET Snn
M2800

Do not use the
step control
device in a
pulse contact
within the main
program body.

FX Series Programmable Controllers STL Programming 3

3-10

3.6 Restrictions Of Some Instructions When Used With STL

Although STL can operate with most basic and applied instructions there are a few exceptions.
As a general rule STL and MC-MCR programming formats should not be combined. Other
instruction restrictions are listed in the table below.

Restrictions on using applied instructions

Operational State

Basic Instructions

LD, LDI, AND,
ANI, OR,ORI,

NOP, OUT,
SET, RST,
PLS,PLF

ANB, ORB,
MPS,MRD,

MPP
MC, MCR

Initial and general
states

✔ ✔ ✗

Branch-
ing and
merging
states

Output
processing

✔ ✔ ✗

Transfer
processing

✔ ✗ ✗

STL

S**SET

STL

S**SET

STL

STL

STL
S**SET

• Most applied instructions can be used within STL programs. Attention must be paid to
the way STL isolates each non-active step. It is recommended that when applied
instructions are used their operation is completed before the active STL step transfers to
the next step.

Other restrictions are as follows:

- FOR - NEXT structures can not contain STL program blocks.

- Subroutines and interrupts can not contain STL program blocks.

- STL program blocks can not be written after an FEND instruction.

- FOR - NEXT instructions are allowed within an STL program with a nesting of up to 4
levels.

For more details please see the operational compatibility listed in the two tables on
pages 7-12,7-13.

Using ‘jump’ operations with STL

• Although it is possible to use the program jump operations (CJ instruction) within STL
program flows, this causes additional and often unnecessary program flow
complications. To ensure easy maintenance and quick error finding it is recommended
that users do not write jump instructions into their STL programs.

FX Series Programmable Controllers STL Programming 3

3-11

3.7 Using STL To Select The Most
Appropriate Program

So far STL has been considered as a simple flow charting programming language. One of
STL’s exceptional features is the ability to create programs which can have several operating
modes. For example certain machines require a selection of ‘manual’ and ‘automatic’ modes,
other machines may need the ability to select the operation or manufacturing processes
required to produce products ‘A’, ‘B’, ‘C’, or ‘D’. STL achieves this by allowing multiple program
branches to originate from one STL state. Each branch is then programmed as an individual
operating mode, and because each operating mode should act individually, i.e. there should be
no other modes active; the selection of the program branch must be mutually exclusive. This
type of program construction is called “Selective Branch Programming”. An example
instruction program can be seen below, (this is the sub-program for STL state S20 only) notice
how each branch is SET by a different contact.

A programming construction to split the program flow between different branches is very useful
but it would be more useful if it could be used with a method to rejoin a set of individual
branches.

This type of STL program construction is called a “First State Merge” simply because the first
state (in the example S29, S39 or S49) to complete its operation will cause the merging state
(S50) to be activated. It should be noticed how each of the final STL states on the different
program branches call the same “joining” STL state.

FX1S FX1N FX2N FX2NC

Y0

X0 X1 X2

S
Y
X
S
X
S
X
S

20
0

21
1

31
2

41

STL
OUT
LD
SET
LD

SET

SET
LD

0

S 21 S 31 S 41

S 20

Y10S 29

X10

S 39 S 49

X11 X12

Y11 Y12

S 50

STL
OUT

S
Y

39
11

STL
OUT

S
Y

49
12

LD
SET

X
S

10
50

LD
SET

X
S

11
50

LD
SET

X
S

12
50

STL
OUT

S
Y

29
10

FX Series Programmable Controllers STL Programming 3

3-12

3.8 Using STL To Activate Multiple Flows
Simultaneously

In the previous branching technique, it was seen how a single flow could be selected from a
group. The following methods describe how a group of individual flows can be activated
simultaneously. Applications could include vending machines which have to perform several
tasks at once, e.g. boiling water, adding different taste ingredients (coffee, tea, milk, sugar) etc.
In the example below when state S20 is active and X0 is then switched ON, states S21, S31
and S41 are ALL SET ON as the next states. Hence, three separate, individual, branch flows
are ‘set in motion’ from a single branch point. This programming technique is often called a
‘Parallel Branch’. To aid a quick visual distinction, parallel branches are marked with horizontal,
parallel lines.

Limits on the number of branches

• Please see page 3-14 for general notes on programming STL branches.

Notes on using the FX-PCS/AT-EE software

• Please see page 3-15 for precautions when using the FX-PCS-AT/EE software.

FX1S FX1N FX2N FX2NC

Y0

X0

S
Y
X
S

20
0

21

STL
OUT
LD
SET

0

S 21 S 31 S 41

S 20

SET
SET

31
41

S
S

FX Series Programmable Controllers STL Programming 3

3-13

When a group of branch flows are activated, the user will often either;

a) ‘Race’ each flow against its counter parts. The flow which completes fastest would then
activate a joining function (“First State Merge” described in the previous section) OR

b) The STL flow will not continue until ALL branch flows have completed there tasks.
This is called a ‘Multiple State Merge”.

An explanation of Multiple State Merge now follows below.
In the example below, states S29, S39 and S49 must all be active. If the instruction list is
viewed it can be seen that each of the states has its own operating/processing instructions but
that also additional STL instructions have been linked together (in a similar concept as the
basic AND instruction). Before state S50 can be activated the trigger conditions must also be
active, in this example these are X10, X11 and X12. Once all states and input conditions are
made the merging or joining state can be SET ON. As is the general case, all of the states
used in the setting procedure are reset automatically.

Because more than one state is being simultaneously joined with further states (some times
described as a parallel merge), a set of horizontal parallel lines are used to aid a quick visual
recognition.

Y10S 29 S 39 S 49Y11 Y12

S 50

STL
OUT

S
Y

39
11

STL
OUT

S
Y

49
12

STL
OUT

S
Y

29
10

X10
X11
X12

STL
STL
STL
LD
AND
AND
SET

S
S
S
X
X
X
S

29
39
49
10
11
12
50

Limits on the number of branches

• Please see page 3-14 for general notes on programming STL branches.

Notes on using the FX-PCS/AT-EE software

• Please see page 3-15 for precautions when using the FX-PCS-AT/EE software.

FX Series Programmable Controllers STL Programming 3

3-14

3.9 General Rules For Successful STL Branching

For each branch point 8 further branches may be programmed. There are no limits to the num-
ber of states contained in a single STL flow. Hence, the possibility exists for a single initial state
to branch to 8 branch flows which in turn could each branch to a further 8 branch flows etc. If
the programmable controllers program is read/written using instruction or ladder formats the
above rules are acceptable. However, users of the FX-PCS/AT-EE programming package who
are utilizing the STL programming feature are constrained by further restrictions to enable
automatic STL program conversions (please see page 3-15 for more details).
When using branches, different types of branching /merging cannot be mixed at the same
branch point. The item marked with a ‘S’ are transfer condition which are not permitted.

The following branch configurations/modifications are recommended:

S 40S 30S 20

S 60S 50

X0

X0 X1

S 30S 20 S 30S 20

X2X1
X0

X0 X1 X2

S 60S 50

X3 X4

S 30 S 40S 20

X0 X1 X2

S 60S 50

X3 X4

S 30 S 40S 20

S 100

(S100)(S100)

S 40S 30S 20

S 60S 50

X0

S 101

(S101)

20
0

100
30
1

100
40
2

100
100
100

3
50

100
4

60

S
X
S
S
X
S
S
X
S
S
S
X
S
S
X
S

STL
LD
SET
STL
LD
SET
STL
LD
SET
STL
LD
AND
SET
LD
AND
SET

S 50S 40 S 50S 40

X0 X1

S 30S 20

(S102)

S 50S 40

S 30S 20

X1 X2
(S103)

S 103S 102

(S103)

X0

S 50S 40

20
30
40
0

101
101
101
50
60

S
S
S
X
S
S
S
S
S

STL
STL
STL
LD
SET
STL
LD
SET
SET

STL
LD
SET
STL
LD
SET
STL
LD
SET
SET

S
X
S
S
X
S
S
S
S
S

20
0

102
30

102
102
102
40
50

1

STL
STL
LD

S
S
X
S
S
S
X
S
S
X
S

SET
STL
LD
AND
SET
LD
AND
SET

20
30
0

103
103
103

1
40

103
2

50

Rewrite as Rewrite as

Dummy state Dummy
state

Dummy
state

Dummy
state

In Instruction
format...

In Instruction
format...

FX Series Programmable Controllers STL Programming 3

3-15

3.10 General Precautions When Using
The FX-PCS/AT-EE Software

This software has the ability to program in SFC flow diagrams. As part of this ability it can read
and convert existing STL programs back into SFC flows even if they were never originally
programmed using the FX-PCS/AT-EE software. As an aid to allowing this automatic SFC flow
generation the following rules and points should be noted:

1) When an STL flow is started it should be initialized with one of the state devices from the
range S0 to S9.

2) Branch selection or merging should always be written sequentially moving from left to right.
This was demonstrated on page 3-11, i.e. on the selective branch S21 was specified before
S31 which was specified before S41. The merge states were programmed in a similar
manner, S29 proceeded S39 which proceeded S49.

3) The total number of branches which can be programmed with the STL programming mode
are limited to a maximum of 16 circuits for an STL flow. Each branch point is limited to a
maximum of 8 branching flows. This means two branch points both of 8 branch flows would
equal the restriction. These restrictions are to ensure that the user can always view the STL
flow diagram on the computer running the FX-PCS-AT/ EE software and that when it is
needed, the STL program flow can be printed out clearly.

X0

X2

X3

S 21

S 22

S 20

X7

S 29

X1

X5

X6

S 23

S 24

X4

X10

X12

X13

S 25

S 26

X17

X11

X15

X16

S 27

S 28

X14

X2

X3

S 21

S 22

X1

X5

X6

S 23

S 24

X4

X12

X13

S 25

S 26

X11

X15

X16

S 27

S 28

X14

X0 X0 X10 X10

S 20

X7 X7 X17 X17

S 29

X0

S 20

X6

S 29

X1

X7

X2

S 21

S 22

X3

S 23

S 24

X4

S 25

S 26

X5

S 27

S 28

20
0

21
23
1

25
27

S
X
S
S
X
S
S

STL
LD
SET
SET
LD
SET
SET

22SSTL
24
6

29
26
28
7

29

S
X
S
S
S
X
S

STL
LD
SET
STL
STL
LD
SET

Further recommended program changes:

Rewrite as...

Rewrite as...

Program violation!

FX1S FX1N FX2N FX2NC

FX Series Programmable Controllers STL Programming 3

3-16

3.11 Programming Examples

3.11.1 A Simple STL Flow

This simple example is an excerpt from a semi-automatic loading-unloading ore truck program.
This example program has a built in, initialization routine which occurs only when the PLC is
powered from OFF to ON. This is achieved by using the special auxiliary relay M8002.

This activates a Zone ReSeT (ZRST is applied
instruction 40) instruction which ensures all of
the operational STL states within the program
are reset. The program example opposite
shows an M8002/ZRST example.

The push button X0 acts as a start button and a mode selection button. The STL state S0 is
initialized with the ZRST instruction. The system waits until inputs X0 and X2 are given and Y
13 is not active. In the scenario this means the ore truck is positioned at the ore discharge
point, i.e. above the position sensor X2. The ore truck is not currently discharging its load, i.e.
the signal to open the trucks unloading doors (Y13) is not active and the start button (X0) has
been given. Once all of the points have been met the program steps on to state S21.

On this state the ore cart is moved (Y10) and positioned (X1) at the loading hopper. If the start
button (X0) is pressed during this stage the ore cart will be set into a repeat mode (M2 is reset)
where the ore truck is immediately returned to the loading hopper after discharging its current
load. This repeat mode must be selected on every return to the loading station.

Once at the loading point the program steps onto state S22. This state opens the hoppers
doors (Y11) and fills the truck with ore. After a timed duration, state S23 is activated and the
truck returns (Y12) to the discharge point (X2).

FX1S FX1N FX2N FX2NC

Y13

X0

Y10Y12

X2 X1

Y11

Loading hopper

Ore truck

Ore dischange point

Start button

M8002
ZRST S21 S25

FX Series Programmable Controllers STL Programming 3

3-17

Once at the discharge point the truck opens its bottom doors (Y13). After a timed duration in
which the truck empties its contents, the program checks to see if the repeat mode was
selected on the last cycle, i.e. M2 is reset. If M2 was reset (in state S21) the program ‘jumps’ to
step S21 and the ore truck is returned for immediate refilling. If M2 is not reset, i.e. it is active,
the program cycles back to STL state S0 where the ore truck will wait until the start push
button is given.
This is a simple program and is by no means complete but it identifies the way a series of tasks
have been mapped to an STL flow.

Y10

X1

Y11

X0

T1

Y12

X2

ZRST S 25

STL

SET S 21

S 21
Y10

RST M 2
X0

STL

S 22
Y11

SET S 23
T1

SET S 22

STL

S 23
Y12

SET S 24
X2

X1

STL

S 24
Y13

T2

M2

STL

S 25

RET

END

STL

S 0

X2X0 Y13

T1
K70

T2
K50

M2

T2
SET S 25

M2
SET M 2

SET S 0
M8002

S 21

S 0

RST M2

X0
X2

Y13

T1
K70

Y13

T2
K50

M2 M2

SET M2

M2

2
50
2
2

25
2
2
0

25
2
2

21

OUT
K

LD
ANI
SET
LD
AND
OUT
STL
SET
LD
OUT
RET
END

T

T
M
S
T
M
S
S
M
M
S

1
22
22
11
1

70
1

23
23
12
2

24
24
13

X
S
S
Y
T

T
S
S
Y
X
S
S
Y

LD
SET
STL
OUT
OUT

K
LD
SET
STL
OUT
LD
SET
STL
OUT

8002
0

21
40

25
0
0
2

13
21
21
10
0
2

M
S

S
S
S
X
X
Y
S
S
Y
X
M

LD
SET
ZRST

STL
LD

ANI
AND

SET
STL
OUT
LD
RST

S 21

S 22

S 23

S 24

S 25

T2

S 0

S 21

Identification of normally closed contacts

This example has used the line convention to identify normally closed contacts, for further
variations and different methods used to perform this task please see the information note
page 3-3.

FX Series Programmable Controllers STL Programming 3

3-18

3.11.2 A Selective Branch/ First State Merge Example Program

The following example depicts an automatic sorting robot. The robot sorts two sizes of ball
bearings from a mixed ‘source pool’ into individual storage buckets containing only one type of
ball bearing.

The sequence of physical events (from initial power On) are:

1) The pickup arm is moved to its zero-point when the start button (X12) is pressed. When the
pickup arm reaches the zero-point the zero-point lamp (Y7) is lit.

2) The pickup arm is lowered (Y0) until a ball is collected (Y1). If the lower limit switch (X2) is
made a small ball bearing has been collected; consequently no lower limit switch signal
means a large ball bearing has been collected. Note, a proximity switch (X0) within the
‘source pool’ identifies the availability of ball bearings.

3) Depending on the collected ball, the pickup arm retracts (output Y2 is operated until X3 is
received) and moves to the right (Y3) where it will stop at the limit switch (X4 or X5)
indicating the container required for storage.

4) The program continues by lowering the pickup arm (Y0) until the lower limit switch (X2) is
reached.

5) The collected ball being is released (Y1 is reset).

6) The pickup arm is retracted (Y2) once more.

7) The pickup arm is traversed back (Y4) to the zero-point (X1).

Y3

Y4

X12 Y7

X1 X3 X4 X5

X2

X0

Y1

Y2

Y0

Points to note

• The Selective Branch is used to choose the delivery program for either small ball
bearings or large ball bearings. Once the destination has been reached (i.e. step S24
or S27 has been executed) the two independent program flows are rejoined at step
S30.

• The example program shown works on a single cycle, i.e. every time a ball is to be
retrieved the start button (X12) must be pressed to initiate the cycle.

FX Series Programmable Controllers STL Programming 3

3-19

Full STL flow diagram/program.

Y0

T0

T1

S 0

X12

Y7

X2

T0

Y2

Y3

X4

RST Y1

K20

S 21

S 22 SET Y1

K10

S 23

T1

S 24

T2

X3

T0

T1

X2

Y2

Y3

X5

S 25 SET Y1

K10

S 26

T1

S 27

X3

X4 X5

T2

S 32 Y2

K10

S 30

X2

S 31

Y0

X3

S 33 Y4
X1

X1

Start
Zero-point arrival

Lower pickup arm

This example uses the dot notation to identify
normally open and normally closed contacts.

Normally open contacts
Normally closed contacts

Lower limit = small ball

Collect ball

Raise
pickup arm

Upper limit reached

Move to small ball bucket

Lower limit = large ball

Collect
ball

Raise
pickup arm

Upper limit reached

Move to large ball bucket

Lower pickup arm

Lower limit reached

Release ball

Raise pickup arm

Upper limit reached

Return to zero-point

Zero-point reached

FX Series Programmable Controllers STL Programming 3

3-20

3.12 Advanced STL Use

STL programming can be enhanced by using the Initial State Applied Instruction. This
instruction has a mnemonic abbreviation of IST and a special function number of 60. When the
IST instruction is used an automatic assignment of state relays, special auxiliary relays (M
coils) is made. The IST instruction provides the user with a pre-formatted way of creating a
multi-mode program. The modes available are:

a) Automatic:

- Single step

- Single cycle

- Continuous

b) Manual:

- Operator controlled

- Zero return

More details on this instruction can be found on page 5-67.

